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ABSTRACT
Cloud computing offers unparalleled flexibility, a constantly increasing set of “Infrastructure As A Service’’
capabilities, resource elasticity and security isolation. One of the most significant barriers in astronomy to
wholesale adoption of cloud infrastructures is the cost for hot storage of large datasets - particularly for Rubin,
a Big Data project sized at 0.5 Exabytes (500 Petabytes) over the duration of its 10-year mission. We are
planning to reconcile this with a “hybrid” model where user-facing services are deployed on Google Cloud with
the majority of data holdings residing in our on-premises Data Facility at SLAC. We discuss the opportunities,
status, risks, and technical challenges of this approach.
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1. INTRODUCTION
In 2019 the funding of Vera C. Rubin Observatory1 operations changed with the Department of Energy (DOE)
increasing its contribution to 50%, with the bulk of that funding the US Data Facility (USDF) at a site to be
determined. This led to changes in how and where we would operate Rubin Data Management. We used the
opportunity and uncertainty to propose the Interim Data Facility (IDF), a cloud-based solution, thus alleviating
the immediate need to know the location of the USDF. The IDF has been very successful and supported three
data previews with simulated data.2 When SLAC National Accelerator Laboratory was selected as the USDF we
maintained the interim solution to overlap the startup with the USDF; however, as we discussed the architecture
a hybrid solution emerged. Keeping all science users on the cloud has certain security and scalability advantages
while keeping the bulk of the data at SLAC has some cost advantages. DOE has committed funds for three years
of the US cloud-based Data Access Center (DAC) on Google, which should bring us to 2027. The interim cloud
will transition to become the US DAC. For the first two data previews all data was on Google; the third data
preview had the database at SLAC and users on Google. The intention is to have most data at SLAC with the
users accessing databases using IVOA protocols and images using the client/server Butler.3 Thus the users do
not have SLAC accounts and do not require approval through more detailed institutional processes. The system
is built on Terraform and Kubernetes deployed with ArgoCD using our own configuration system, Phalanx.∗

∗https://phalanx.lsst.io
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2. SYSTEM REQUIREMENTS
Rubin Observatory has a rigorous approach to requirements management.4 Most relevant requirements for
the USDF are in the Data Management Subsystem Requirements (DMSR) document.5 Having to switch data
facilities encouraged us to pull system requirements which affect the data facility into one document which was
used to scope the SLAC operations,6 which we will not enumerate here although the tables of requirements
broadly matching this section may be found there. The USDF is responsible for significant functionality in
several areas as outlined below.

2.1 Networking
USDF must arrange 100Gbit/s, path redundant, network capacity to the Energy Sciences Network (ESNet) to
connect to the Rubin Observatory facility in Chile. USDF must ensure their contribution to network latency is
maximum 3s. Enough bandwidth must also be available to exchange files with France and the UK for annual
Data Release processing.

2.2 Prompt processing
The USDF will need to run the Prompt Processing framework in near-real-time in order to execute the Alert
Production payload that generates prompt data products and alerts corresponding to changes in the sky. The
processing is to be completed and alerts are to be distributed within two minutes of the end of readout of an
image from the LSST Camera. Quality control metrics for the images also need to be generated and made
available to staff. Prompt products, including both images and catalogs, and alerts are stored for retrieval by
science users and staff.

2.3 Batch System
Every year, the accumulated images taken to date will be reprocessed. This extensive and complex Data Release
Production runs in batch mode across the US, French, and UK Data Facilities. The USDF is responsible for
providing infrastructure for executing 35% of the Data Release, coordinating the campaign to generate the annual
Data Release, ensuring the quality of the data products, archiving a copy of 100% of those products, and making
them available to science users through the US DAC. Certain products will also be distributed to Independent
Data Access Centers and Science Collaborations.7

The batch system and associated interactive nodes are also used extensively by staff for development of future
versions of the LSST Science Pipelines code.8 Though most science user access will be via the Data Access Center
(DAC) (see subsection 2.5) there are requirements for science users to have some access to batch-type processing
for larger-scale, non-interactive computations on the data.9 This will be controlled by a Resource Allocation
Committee.

2.4 Data transfer and preservation
The USDF is responsible for operating the systems that track all raw data and released data products, including
managing their movement, backup, and lifetime. These systems must be fault-tolerant for high availability and
must also be able to catch up after failures such as network outages.

2.5 US Data Access Center
The USDF hosts the US DAC. To science users, the DAC appears primarily as an installation of the Rubin Science
Platform (RSP)10 (see Figure 1). This software includes the Portal Aspect, a web-based application for browsing,
querying, and investigating the data products; the Notebook Aspect, which allows interactive, customized pro-
grams to retrieve and manipulate the data products; and the API Aspect, which provides community-standard
protocols for automated retrieval of data. The RSP is deployed using Helm∗ and ArgoCD as a suite of services
on top of Kubernetes.

∗https://helm.sh/
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In the hybrid model, most of this will be hosted in the cloud, with the underlying data, both prompt products
and annual Data Release products, fed from the USDF at SLAC. An RSP for staff will also be deployed on top
of a Kubernetes cluster provided by the USDF.

This system is to be sized for around 10K users with an anticipated 1K users simultaneously accessing at any
given time. Each user will have a limited amount of user space (order 100GB) for storage of output images and
queries.

There is further functionality specified for the DAC such as precovery, product regeneration and special
program support which imply invocation of batch processing. User generated products must be stored and
potentially shared; catalog uploads will also be allowed. Access is to the current and previous year’s Data
Release.

3. GENERAL CLOUD BENEFITS AND DRAWBACKS
Commercial cloud providers are generally competitive with on-premises facilities for provision of compute cycles,
especially where the needs are time-varying. Storage costs, however, tend to be higher in the cloud than at
research facilities, possibly due to higher durability and availability requirements for commercial data than for
research data. Cloud providers do not charge for data import to the cloud, but they do charge for egress from
the cloud.

The hybrid model we have chosen uses the cloud for highly-elastic support of science users while keeping the
more-constant near-real-time nightly compute load and high-throughput annual reprocessing load at on-premises
facilities. The bulk of the storage is also maintained on-premises, with relatively small caches and user data kept
in the cloud. This design ensures that the bulk of the data transfer is from SLAC to the cloud, qualifying as
free ingress. Science users are expected to process the data in the cloud, reducing its volume prior to retrieval
to their own systems. Thus we attempt to use the strengths of each provider.

Egress charges can be a significant worry when dealing with unconstrained users accessing popular data
products. We believe these can be controlled through three means: contractual waivers and discounts, throttling
of Science Platform applications and interfaces with quota allocations by a Resource Allocation Committee, and
potentially the purchase of a fixed-cost, fixed-bandwidth exit network connection to be used by all science users.

One major advantages of using a cloud provider beyond simple cost considerations is the separation of security
concerns. Users at SLAC require extra checks which take some time because it is a DOE facility. SLAC may
have difficulty processing accounts for our many thousands of users. By putting all the science users on Google
we can streamline access using InCommon∗ which will allow us to identify most US academic users.

Another benefit that is not directly financial is that the commercial cloud providers are incentivized to
provide excellent managed infrastructure tooling such as Kubernetes, relational databases, messaging systems,
and log explorers, in addition to the underlying compute, storage, and networking. Being able to rely on such
sophisticated, performant, and reliable tooling eases deployment of our services. Academic and research facilities,
including SLAC, are often behind when it comes to providing this level of support.

A major plus for on-prem in this instance is the backing of DOE; this is what they want, and there is
commitment to making it work.

4. ARCHITECTURE ON GOOGLE CLOUD
As the RSP services were built for cloud deployment (see section 6), they are elastically scalable and easy to set
up. The Portal and Notebook Aspects each run as an ArgoCD application, while each API within the API Aspect
is its own application. They rely on a common authentication and authorization (and throttling) infrastructure
to ensure that only science users with appropriate data rights have access.

The back-end communication with the USDF services hosting the bulk of the data products is mediated
through two primary interfaces: a relational database query interface for catalogs that can talk to the scalable,

∗https://incommon.org/
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Figure 1. Users hosted on Google will typically use the Rubin Science Platform (RSP) depicted here.

distributed Qserv service11,12 and the client-server Butler3,13 for access to image and other file-based data
products.

The client-server Butler manages metadata about data products and user rights to access those products.
It can generate signed URLs that provide anonymous, bearer access for a limited time to specific files in the
underlying storage at the USDF. These URLs can be consumed by RSP services, or they can be returned directly
to science users, avoiding mediation of network traffic by Google (which would count as egress). For performance
reasons, we may host a subset of the data products, either statically or dynamically chosen (or a combination of
both), in the cloud.

We will also provide a service for advanced science users to execute batch jobs. Since these jobs are expected
to involve processing a large amount of data, it makes sense to run them at the USDF. We can either have these
specialized users obtain SLAC accounts, or we can use batch processing tools designed for the grid to manage
the jobs and corresponding resource and access controls.

We reported on the Interim Data Facility (IDF) already at ADASS.2 Our services have been operating on
Google Cloud for over three years now. In Data Preview 0.3 on IDF,,14 the database instance was moved to
SLAC, so we have demonstrated this functionality also works.

5. US DATA FACILITY ARCHITECTURE
The scope for the USDF on-prem includes data production services: prompt processing, serving alerts to the
community and annual Data Release Processing. The USDF acts as the archive for all data, and provides the
Qserv object catalog as well as access to image data, be it cutouts or full images. It will provide batch cycles for
cloud-based science users. It will also act as a home for developers and staff (and commissioners) to ensure data
quality (see Figure 2).

5.1 Hardware
The USDF is hosted by the SLAC Shared Scientific Data Facility (S3DF) which is itself hosted in Stanford
Research Computing Facility (SRCF). SRCF accommodates projects from SLAC and Stanford, while the S3DF
is the focal system for SLAC projects. The USDF lives in a shared cluster and benefits from economies of scale
and standardization across S3DF projects. It is also exposed to potentially disruptive activities by other projects.

In order to support hundreds of PBs of storage, S3DF adopted the Weka filesystem for high throughput.
Weka is based on a tiered system with Solid State Disks (SSD) backed by spinning disk. It presents a POSIX



Figure 2. Hybrid model: Data at SLAC but users on the cloud.

interface while the backend is a Ceph object store. This system forms the basis of the data archive. A tape robot
provides storage for seldom-read data and acts as a backup tier.

Batch processing is done on a Slurm cluster, currently primarily Advanced Micro Devices (AMD) milan
processors with 128 cores and 512 GB RAM per node.

Data is transported to the USDF from the summit over a combined leased-line, ESNet-supported network
with routing optimized via an overlay. The leased line terminates in Atlanta, where ESNet takes over. Traffic
to the two other Data Facilities is also provided by ESNet, connecting to the GEANT∗ and Renater systems in
Europe.

5.2 Batch processing
The USDF supports batch processing for a number of purposes: annual multi-site data releases; pipelines teams
testing for algorithms performance; processing by individual developers for their algorithm development; data
quality checking and validation.

Multisite processing makes use of the Production ANd Distributed Analysis system (PanDA),15 developed
by ATLAS (A Toroidal LHC Apparatus) for the Large Hadron Colider (LHC). It has a well-defined mechanism
for routing work from a central server to multiple remote locations. ATLAS has demonstrated submitting
millions of jobs per day to hundreds of sites. A difference between typical astronomy and High Energy Physics
(HEP) workflows is the number of and duration of processes: astronomy tends to many more much shorter
jobs than HEP.16 Significant effort was required working with the PanDA team to cluster up short jobs to avoid
prohibitive startup costs. PanDA is a heavyweight solution to processing; local processing for the pipelines teams
and developers is done using HTCondor†.

Data management and movement is also orchestrated by LHC tools: Rucio‡ for data management and FTS3§

for movement. These tools also routinely handle large numbers of files and transfers, however the difference
between astronomy and HEP persists here as well, with astronomy generating many more, much smaller files
than HEP. This will make the Rubin Rucio database bigger than ATLAS’s and will require some growth planning.

The large number of small files will also be a challenge for network transfer. We are investigating zipping up
large numbers of files both for better transfer as well as easier storage on tape.

∗pan-European data network for the research and education community
†https://htcondor.org
‡https://rucio.cern.ch
§https://fts3-docs.web.cern.ch/fts3-docs/
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5.3 Non-user-facing services
Currently the primary reasons for putting services on-prem are a low latency requirement for prompt processing,
and the still-unfavorable comparison of storage prices between on-prem and the cloud. To a lesser degree, those
comparisons also apply to CPU.

This means that Prompt Processing and Alerts production, with their 2-minute latency requirement are
hosted on-prem. Additionally, there are security requirements on data arriving at the USDF, including physical
measures implemented on the racks themselves.17

The large data volumes associated with the storage archive and Qserv database hosted at the USDF implies
that external access to them must be provided by services.

Kubernetes is used to manage almost all our services, making use of ArgoCD as well as our custom Phalanx
system (see §6). Native Kubernetes tools are used to manage standard services, such as Postgres databases,
making administration, backups, etc, scalable. Rucio and PanDA are managed by Kubernetes to take advantage
of these features.

The Prompt Processing framework executing the Alert Production is implemented using Knative∗ on top of
Kubernetes to allow elastic instantiation, configuration, and teardown of pods responding to notifications from
the summit in advance of the next visit. Prompt Processing and Alert Distribution both use Kafka installed
on Kubernetes. We use the Strimzi Operator to install Kafka and for management. Strimzi has worked well to
simplify installation, upgrades, and for maintaining health of the Kafka clusters.

Three large database systems are minimally using Kubernetes, as they are either commercial or custom
services with no native Kubernetes support. These are the Engineering and Facilities Database (EFD),18 Qserv,
and Cassandra systems, with Qserv the custom system. The EFD is implemented with an InfluxDB Enterprise
High Availability cluster.

For monitoring we use Prometheus†. Prometheus has native support for Kubernetes metrics and many of
the Kubernetes operators described earlier like Strimzi and the Cloud Native Postgres (CNPG) natively provide
metrics in Prometheus. We also wrote some of our own metrics to track Prompt Processing. We use Grafana
for creating dashboards to visual metrics and for generating alarms when thresholds are crossed. We use Loki
from Grafana Labs to capture logs from Kubernetes pods and from application level logs. Loki stores these logs
in an on-premise S3 Ceph Cluster.

6. CONTINUOUS DEPLOYMENT ACROSS THE RUBIN FACILITIES
Being cloud-ready is certainly the biggest challenge for most projects/applications which intend to leverage
the commercial cloud. Early on we adopted Kubernetes which provided a service architecture that is well
isolated from the underlying infrastructure. This approach has already paid off massive dividends. For example
when funding lines suddenly shifted we were able to painlessly transition from an on-premises facility to an
Interim Data Facility on Google Cloud. Furthermore the Rubin Science Platform (RSP) became a generic data
services platform that is currently deployed on eight distinct (and distinctly managed) infrastructures (on-prem
and cloud). Finally this has allowed us to leverage the cloud for services like the RSP which benefit from its
advantages such as elasticity, scalability, isolation.

6.1 Division of responsibilities
We have had ways to abstract system services from our developed services for some time, containers and Java
effectively allow one to run anywhere. These work well enough for single user single processor deployments.
When scaling up to another level of orchestration, Kubernetes fits neatly between our infrastructure and our
developed applications providing a powerful container orchestration and resource management system.

Our agreement with each facility is to provide a Kubernetes deployment platform upon which we may deploy
our services and our secrets vault for security. Each thus provides a Kubernetes environment with disk, network

∗https://knative.dev/docs/
†https://prometheus.io
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and compute resources upon which we spin up our services. From the service perspective each facility looks
similar. It feels like the first time that this actually works well - we have learned to make our applications
portable of course but also the technology is so much better than any precursors.

6.2 Phalanx, Helm and ArgoCD
Helm is a standard approach which we use to manage our Kubernetes applications. For our purposes this is
most usually a JSON file describing which GitHub repo our code is in where the container is and how to start it.

There are parts of this configuration which are site specific and parts which are generic. For example the
database URL for an application will be different in USDF and Summit, the value of the database URL is
different are each site, the URL variable is the same so the application does not change only the configuration.
Phalanx∗ is our repository of configuration files for all of our deployments. Within Phalanx each application has
a directory with a Helm configuration - it also has a values file for each environment to specify the specific values
for that environment. Each environment also has a Vault configuration so that secrets such as database password
may also be specified by an environment specific identifier. Finally Phalanx has a list of deployed applications
on each site.

Actual deployment is managed by ArgoCD†, which provides continuous delivery for Kubernetes. It interprets
the configuration files stored in Phalanx to deploy containers on the Kubernetes system associated with each
environment. Some of the current environments are listed in Table 1, typically each environment also has a dev
and integration version. This is a powerful system which can track the main or any given branch or tag of a
github repository to keep the application in sync.

Table 1: Phalanx environments - typically we have dev, int and
production for each.

Name Environment endpoint
base La Serena
ccin2p3 French Data Facility
idfprod Production RSP in GCP
minikube GitHub Actions CI
roe UK Data Facility
roundtable-prod SQuaRE services
summit Rubin Summit
tucson-teststand T&S/SITCom
usdfprod Production RSP at USDF
usdfprod-prompt-processing Prod for USDF Prompt Processing

6.3 Continuous Integration
We rely on Github actions to build containers for each branch or tag of a given application. In Phalanx a specific
branch or tag can be used to test a specific new release of a given application. We normally also enable pre-
commit to run linting and formatting using black‡. Most Phalanx applications use tox§ for Python automation
(testing, documentation building etc).

The science pipelines are built by Jenkins¶ nightly.19 For specific changes developers may invoke the stack-
os-matrix‖ to check changes will not break the nightly build. Weekly and stable releases are built from sources

∗https://phalanx.lsst.io
†https://argo-cd.readthedocs.io/en/stable/
‡https://black.readthedocs.io/en/stable/
§https://tox.wiki/en/latest/index.html
¶https://jenkins.io
‖https://developer.lsst.io/stack/jenkins-stack-os-matrix.html
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and packaged as a conda∗ environment as well as an Apptainer† container image specifically to be distributed via
a software distribution network based on CERN’s CernVM-FS‡. SLAC subscribes to this distribution channel
and makes available the Rubin software stack to pipeline developers, to individual users, as well as to tasks
executing in its batch farm. Hosted by the French data facility, this distribution mechanism ensures all Rubin
data facilities use an identical copy of the software to produce the data releases and allows data centers where
science collaborations will consume Rubin data products to get an always up-to-date release of the software (e.g.,
NERSC§).

7. OPEN ISSUES
We have not yet tested the client server butler between SLAC and Google. We have checked the bandwidth and
latency is acceptable but it remains to be seen how it will work under the load of 10,000 users on day one of a
data release.

Butler implements a client cache so a scientist’s notebook or script repeatedly accessing the same image is
read efficiently. For cloud connections, we consider a general cache for images, but this would only work if many
scientists use the same image. We do not know the image access patterns that will occur in operations, so we are
unsure if this will work. Perhaps the client cache is adequate. We are considering permanently caching the deep
coadds in the cloud since they will be accessed most frequently. Individual processed visit images may never be
amenable to caching.

We need to investigate how to get a consolidated view of key metrics and monitoring across the cloud and
on-premise. Such a view would help immensely in tracking down issues which may appear in one part while the
cause is elsewhere.

For user batch we have specified users would have to have SLAC accounts and log in to SLAC to submit
jobs9 on SLAC systems. It would be user-friendly to allow submission of batch jobs directly from the cloud-
hosted science platform to these systems. In principle we can do this however there are issues ranging from time
allocation at SLAC to accessing of results which are not yet resolved.

8. CONCLUSION
The Vera C. Rubin Observatory will come into operations in 2025. The Rubin US data facility, hosted at SLAC,
stores the Rubin data and processes it in conjunction with our French and UK partner facilities.

We have already run most of our scientist facing services on Google for three years. We currently support
one thousand users on the science platform hosted on Google and are preparing for the many thousands of more
users Rubin expects.

Transition to a hybrid model with the bulk of the data stored on premises at SLAC but maintaining the
scientist facing services on Google is underway.
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APPENDIX A. ACRONYMS

Acronym Description
ADASS Astronomical Data Analysis Software and Systems
AMD Advanced Micro Devices
API Application Programming Interface
AST NSF Division of Astronomical Sciences
ATLAS A Toroidal LHC Apparatus
AURA Association of Universities for Research in Astronomy
CERN European Organization for Nuclear Research
CI Continuous Integration
CNPG Cloud Native Postgres
CPU Central Processing Unit
DAC Data Access Center
DE dark energy
DMSR DM System Requirements; LSE-61
DMTN DM Technical Note
DOE Department of Energy
EFD Engineering and Facility Database
ESNet Energy Sciences Network
FS File System
FTS3 File Transfer Service 3
GB Gigabyte
GCP Google Cloud Platform
HEP High Energy Physics
IDF Interim Data Facility
IVOA International Virtual-Observatory Alliance
JSON JavaScript Object Notation
LDM LSST Data Management (Document Handle)
LHC Large Hadron Collider (at CERN)
LSE LSST Systems Engineering (Document Handle)
LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Telescope)
NERSC National Energy Research Scientific Computing Center
POSIX Portable Operating System Interface
PanDA Production ANd Distributed Analysis system
RAM Random Access Memory
RSP Rubin Science Platform
RTN Rubin Technical Note
S3 (Amazon) Simple Storage Service
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S3DF SLAC Shared Scientific Data Facility
SLAC SLAC National Accelerator Laboratory
SQuaRE Science Quality and Reliability Engineering
SRCF Stanford Research Computing Facility
SSD Solid-State Disk
UK United Kingdom
URL Universal Resource Locator
US United States
USDF United States Data Facility
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